Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
SUMMARY Within the iron metallogenic province of southeast Missouri, USA, there are several mines that contain not only economic iron resources, magnetite and/or hematite, but also contain rare earth elements, copper and gold. An area including three major deposits, Pea Ridge, Bourbon and Kratz Spring, was selected for detailed modelling for the upper crustal magnetic susceptibility and density structures. For the study area, ground gravity and high-resolution airborne magnetic and gravity gradiometry data sets are available. An efficient and novel joint inversion algorithm for the simultaneous inversion of these multiple data sets is presented. The Gramian coupling constraint is used to correlate the reconstructed density and magnetic susceptibility models. The implementation relies on the structures of the sensitivity matrices and an efficient minimization algorithm to achieve significant reductions in the memory requirements and computational costs. Consequently, it is feasible to use a laptop computer for the inversion of multiple data sets, each containing thousands of data points, for the recovery of models on the study area, each including approximately one million model parameters. This is the first time that these multiple data sets have been simultaneously inverted for this area. The L1-norm stabilizer is used to provide compact and focused images of the ore deposits. For contrast, independent inversions of each data set are also discussed. In general, our results provide new insights about the concealed ore deposits in the Mesoproterozoic basement rocks of southeast Missouri. Both short- and long-wavelength anomalies exist in the recovered models; these provide a high-resolution image of the subsurface. The geometry and physical properties of the known deposits are determined very well. Additionally, some unknown concealed deposits are revealed; these could be economically valuable and should be considered in future geophysical and geological investigations.more » « less
-
The mixed Lp-norm, 0 ≤ p ≤ 2, stabilization algorithm is flexible for constructing a suite of subsurface models with either distinct, or a combination of, smooth, sparse, or blocky structures. This general purpose algorithm can be used for the inversion of data from regions with different subsurface characteristics. Model interpretation is improved by simulta- neous inversion of multiple data sets using a joint inversion approach. An effective and general algorithm is presented for the mixed Lp-norm joint inversion of gravity and magnetic data sets. The imposition of the structural cross-gradient enforces similarity between the reconstructed models. For efficiency the implementation relies on three crucial realistic details; (i) the data are assumed to be on a uniform grid providing sensitivity matrices that decompose in block Toeplitz Toeplitz block form for each depth layer of the model domain and yield efficiency in storage and computation via 2D fast Fourier transforms; (ii) matrix-free implementation for calculating derivatives of parameters reduces memory and computational overhead; and (iii) an alternating updating algorithm is employed. Balancing of the data misfit terms is imposed to assure that the gravity and magnetic data sets are fit with respect to their individual noise levels without overfitting of either model. Strategies to find all weighting parameters within the objective function are described. The algorithm is validated on two synthetic but complicated models. It is applied to invert gravity and magnetic data acquired over two kimberlite pipes in Botswana, producing models that are in good agreement with borehole information available in the survey area.more » « less
-
SUMMARY A fast algorithm for the large-scale joint inversion of gravity and magnetic data is developed. The algorithm uses a non-linear Gramian constraint to impose correlation between the density and susceptibility of the reconstructed models. The global objective function is formulated in the space of the weighted parameters, but the Gramian constraint is implemented in the original space, and the non-linear constraint is imposed using two separate Lagrange parameters, one for each model domain. It is significant that this combined approach, using the two spaces provides more similarity between the reconstructed models. Moreover, it is shown theoretically that the gradient for the use of the unweighted space is not a scalar multiple of that used for the weighted space, and hence cannot be accounted for by adjusting the Lagrange parameters. It is assumed that the measured data are obtained on a uniform grid and that a consistent regular discretization of the volume domain is imposed. Then, the sensitivity matrices exhibit a block-Toeplitz-Toeplitz-block structure for each depth layer of the model domain, and both forward and transpose operations with the matrices can be implemented efficiently using two dimensional fast Fourier transforms. This makes it feasible to solve for large scale problems with respect to both computational costs and memory demands, and to solve the non-linear problem by applying iterative methods that rely only on matrix–vector multiplications. As such, the use of the regularized reweighted conjugate gradient algorithm, in conjunction with the structure of the sensitivity matrices, leads to a fast methodology for large-scale joint inversion of geophysical data sets. Numerical simulations demonstrate that it is possible to apply a non-linear joint inversion algorithm, with Lp-norm stabilisers, for the reconstruction of large model domains on a standard laptop computer. It is demonstrated, that while the p = 1 choice provides sparse reconstructed solutions with sharp boundaries, it is also possible to use p = 2 in order to provide smooth and blurred models. The methodology is used for inverting gravity and magnetic data obtained over an area in northwest of Mesoproterozoic St Francois Terrane, southeast of Missouri, USA.more » « less
An official website of the United States government
